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Supplemental Table S1. Ecotype criteria reported across taxa in a literature review of 112 publications from a Web of Science search for 

“ecotype AND conservation AND management”.  Several studies reported multiple criteria for ecotype. One study considered plants and 

invertebrates, and three (simulation/review) were not specific to any taxon. No records were found for amphibians.  

Taxa (n*) Behaviour Diet/trophic 

level 

Genetic 

differentiation 

Habitat use Phenology Phenotype Other†  Reference 

number§ 

Birds (4) 0 0 3 0 0 2 1 1-4 

Fish (32) 14 4 27 20 5 18 3 5-36 

Invertebrates (10) 3 2 0 6  1 4 0 37-46 

Mammals (30) 8 9 15 23 0 6 2 47-76 

Plants (32) n/a 0 13 15 4 9 5  45, 77-107 

Reptiles (2)  0 0 1  2 0 1  0 108-109 

Across taxa (3; 

review/simulation) 

0 0 1 2 0 0 0 110-112 

Total no. studies 25 15 60 68 10 40 11 112 

* Number of studies reviewed, including one study that included both invertebrates and plants.  

† Pollinator species and anthropogenic ecotypes (plants), production (birds [indigenous African chicken]), parasite fauna, predation level 

and differences in maturation times (fish), isotope (mammal), and life history (fish and mammals). 

§ Genomic analyses were reported for 20 studies, two for birds (reference number 2-3) and 18 for fish (reference number 5, 8-16, 26-27, 

29-31, 33-34, 36).  
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Figure S1. A hypothetical meta-population of a monkey split into two morphs: long-tailed and short-tailed. The dashed line suggests two 

distinct populations based on ecotype. The pie charts show the genetic structure of each subpopulation. The ecotype distinction and the 

genetic structure suggest two different histories, with the southern-most population containing unique ancestry (yellow portion of the pie). 



Supplemental Note S1. Taxonomy 

Careful delineation of taxonomic groups is important because these classifications have long-term 

implications for conservation efforts (Luo et al., 2018), and such intraspecific units represent 

important evolutionary potential within a species. Yet confounding – or a lack of – clear criteria to 

categorise these entities can seriously delay or limit conservation action, also because management 

agencies sometimes lack the taxonomic expertise to assess conflicting scientific assessments (Haig et 

al., 2006). Scientists should likewise be mindful of the importance of translating new evidence for 

genetically defined units into categories that can be considered under local legislation, while 

communicating the nuances of speciation that is emerging from genomic research (Coates et al., 

2018).  Defining excessively broad taxonomic units can lead to management actions resulting in 

outbreeding depression, whereas taxonomic units that are too narrow risk management actions that 

lead to inbreeding depression (Frankham et al., 2012). Frankham et al. (2012) and Haig et al. (2006) 

have therefore suggested that taxonomic splitting with the aim of conserving more biodiversity can 

actually hinder conservation aimed at preserving small populations, resulting in a loss in biodiversity 

over time (but see Gippoliti & Groves, 2012 for a different view). There are long-held concerns that 

scientific evidence behind taxonomic distinction should be clear and transparent, to avoid concerns 

over ‘taxonomic inflation’, which can affect conservation priorities and actions (Berta & Churchill, 

2012). Oftentimes, there are clear links between systematic rankings and priorities for preservation 

(Stanton et al., 2019), whereby reassignment to a lower status can be deemed unfavourable for 

conservation (Bowen & Karl 1999; Crandall et al., 2000). Several authors have highlighted that, 

although taxonomic units should influence conservation strategies, conservation strategies ought not 

to influence taxonomic decisions (Bowen & Karl, 1999; Haig et al., 2006). Moreover, taxonomic 

status assessments, like that of other adaptive management, may need periodic re-evaluation to 

consider new knowledge and technical developments (Ford, 2004; Haig et al., 2006) and the same 



may be relevant for conservation of intraspecific variability. Multiple lines of evidence should be 

considered for taxonomic decisions (Stanton et al., 2019), and this approach is also likely to benefit 

assessments of ecotypes.  

 

Supplemental Note S2. Caribou (Rangifer tarandus) ecotypes 

The influence of sporadic gene flow among reported caribou ecotypes remains unresolved (Courtois 

et al., 2003) and may be affected by various factors including evolutionary history, effective 

population size, and habitat connectivity (Courtois et al., 2003; Klütsch et al., 2016; Serrouya et al., 

2012; Yannic et al., 2017). The terminology used to describe caribou ecotypes is often unclear 

(COSEWIC, 2011), and from a practical management perspective, low confidence in individual 

caribou assignment to specific ecotypes have limited its application in law enforcement (Bourret et 

al., 2020). Microsatellite studies have recently reported conservation units identified by genetic and 

geographical structure (Jenkins et al. 2018), and a wide-scale investigation across eastern Canada by 

Klütsch et al. (2016) found overall broad agreement between genetic structure and boreal vs. eastern 

migratory ecotypes. Moreover, new results from genome-wide analyses indicate parallel evolution of 

similar ecotypes from separate evolutionary lineages and suggest that the designation of caribou 

conservation units merits further revision (Taylor et al., 2020).  Findings for this highly mobile 

species with circumpolar distribution have so far been focused mainly on neutral genetic markers 

(Yannic et al., 2017) which have been the available resources for genetic analyses, but see Cavedon 

et al. (2019), Kharzinova et al. (2016), Shafer et al. (2016), Taylor et al. (2019, 2020), and 

Weldenegodguad et al. (2020) for new genomic findings and broader discussions around their 

interpretation. Even so, studies at various spatial scales have revealed discrepancies between 

differentiation based on (putatively) neutral genetic markers and ecological units (see illustration in 

Supplemental Figure S1) and highlight the need for further research on adaptive genetic 



differentiation (Taylor et al., 2020; Yannic et al., 2016, 2017). Hence, the case of Rangifer tarandus 

(including North American caribou and Eurasian reindeer) illustrates how new genomic results can 

help illuminate the spatiotemporal distribution of adaptive (functional) genetic variation within a 

species (Box 1 Part B) and, over time, inform conservation units that integrate emerging knowledge 

of ecological and evolutionary genetics.  Future study of functional genetic variation could provide 

key information on natural selection and adaptation, which is increasingly important for long-term 

persistence in environments rapidly altered by climate change (Sgrò et al., 2011; Yannic et al., 2017), 

and data on such variation may also help delineate caribou designatable units and ecotypes 

(COSEWIC, 2011). 

 

Supplemental Note S3. Analytical considerations 

Spatial structure and assumptions of genetic equilibrium conditions. Improved understanding of 

contemporary gene flow and genetic structure can provide important real-time information for 

conservation management of different ecotypes (Dahle et al., 2018). Contemporary gene flow may 

be investigated looking at carefully designed marker panels (high minor allele frequency (MAF), 

unlinked loci) and sampling (homogeneous and high density) optimized for assessing relatedness 

across the landscape that does not require assumptions based on equilibrium populations (Norman et 

al., 2017). Here, the degree of “landscape relatedness” will provide a spatial measure of the extent of 

relatedness among individuals on the landscape. However, whereas standard measures in population 

genetics will only integrate those movements that cause meaningful population effects (Cushman et 

al., 2006), landscape relatedness estimates do not assume that animals with low levels of relatedness 

to individuals sampled nearby have dispersed. Selection can occur in the presence of gene flow 

(Fitzpatrick et al., 2015), which has the potential to confound our interpretations. Various 



complementary methods can therefore be used to highlight different spatiotemporal processes that 

matter for monitoring genetic diversity and landscape connectivity.  

 

A key issue for future genetic analyses will be to harness the information from analyses with different 

markers, sampling areas, time spans, and objectives to extract as much information as possible on the 

influence of various spatiotemporal processes (de Groot et al., 2016). At the individual level, dispersal 

decisions could be influenced by the extent to which surrounding areas are occupied by relatives 

(Zedrosser et al., 2007) and whether habitat resembles that of the native range (Edelaar et al., 2008; 

Sacks et al., 2004). Certain species inhabit a temporary landscape with moving territories, represented 

by polar bears (Ursus maritimus) (Kutschera et al., 2016) as well as Arctic foxes (Vulpes lagopus) 

and gray wolves (Canis lupus) in some areas (Carmichael et al., 2007). In wolves, dietary 

specialization may explain seasonal migrations over large areas in certain regions (Musiani et al., 

2007) and genetic differentiation across short distances in others (Pilot et al., 2012; Stronen et al., 

2014). Here landscape ecology and inherent social behaviour interact to produce location-specific 

hierarchies of spatial genetic structure. A study of a given species in one landscape may therefore 

find that a certain variable has a large effect on genetic differentiation, whereas its effects may appear 

much weaker and relatively less important elsewhere, which can be explained by differences in the 

degree to which the landscape composition and configuration limit gene flow (Cushman et al., 2013). 

In addition, history and biogeography can at times provide a better explanation for observed patterns 

than ecological or evolutionary developments (Warren et al., 2014). Sampling may also follow 

political boundaries that have no biological relevance; perhaps producing inflated population 

estimates (Bischof et al., 2016) or more genetic clusters than what an organized sampling through the 

overall range of the population would show. For wide-ranging species, the availability of “hard data” 

that e.g., confirms collared (or similarly tagged) animals traveling across heavily human-altered 



landscapes (Ciucci et al., 2009) and remarkable long-distance movements that can involve important 

ecological changes (Fuglei & Tarroux, 2019) also help limit speculation about wide-ranging wildlife 

species and promote science-based management involving different jurisdictions (Ciucci et al., 2009). 

 

Furthermore, spatial genetic structure may coincide with natural landscape transitions without 

necessarily being shaped or influenced by these features (Bierne et al., 2011). Similarly, landscape 

and/or ecological transitions that occur naturally (i.e., independent from human activities) can result 

in spatial genetic structure (Muñoz-Fuentes et al., 2009; Pilot et al., 2012). The presence of such 

structure could easily remain unnoticed; although at times it may be well known to those intimately 

tied to the local natural history, for instance, local indigenous communities (Stronen et al., 2014). 

Current genetic structures can also reflect historical landscape features that no longer exist, 

exemplified by the corridor that permitted brown bears (U. arctos) from the Iberian lineage entry to 

the Scandinavia peninsula following retreat of the ice sheet after the last glaciation (Bray et al., 2013). 

In contrast, the genetic structure of a fast-evolving virus has been used to infer population genetic 

structure of its large carnivore host over a more recent time scale (Biek et al., 2006). 

 

More attention toward environmental variation and selection. New methods have enabled the 

addition of new evolutionary perspectives to the classic approaches primarily focused on neutral 

genetic markers. However, even studies that genotype thousands of individuals at a large number of 

SNPs generally uncover only a small proportion of the heritable variation of a trait (Meirmans, 2015). 

The next step is improved design of studies that will enhance our ability to detect this genetic 

variation, especially in the presence of seemingly contradictory animal movement (Moura et al., 

2014; Riley et al., 2006; Vander Wal et al., 2013). A further aim is to recognize the selective pressures 

driving genetic changes and to identify how and where genetic differences are expressed within the 



genome. With large numbers of markers, completely avoiding false positives may be almost 

impossible. Adjustment of alpha levels or correction for multiple testing may help to a degree, but at 

the cost of inflating type II errors (Meirmans, 2015). Multiple testing approaches might help, but 

could lead to biases, at least in part, by the particularities and strengths of the given method (Narum 

& Hess, 2011; Stucki et al., 2017). A combination of methods may highlight genes, environmental 

factors, and/or potential driving processes behind genetic variation, which can point to priority areas 

for further investigation. Because various factors can confound the identification of ecotypes and their 

spatial distribution, it is important to consider that false-positive associations can occur if models fail 

to incorporate factors such as isolation by distance, shared demographic history, and cryptic 

relatedness (François et al., 2016). With an expanding toolbox of powerful techniques for genomic 

data analyses, careful attention is required to avoid overfitting models, while ensuring that they 

realistically capture the underlying biology (Liberles et al., 2013). A very small bias may have 

negligible effect in a microsatellite data set but become a strongly significant pattern in a next-

generation sequencing project, which can cause overconfidence in the patterns observed (Meirmans, 

2015). Conversely, a bias against negative results could mean that investigations not producing clear 

genetic structures are less likely to be published or undertaken, despite their importance for the public 

record. Theoretical investigations predicting and then simulating at what sample size or number of 

markers family structure and other effects will no longer be detected (or strongly influential) could 

provide a measure of sensitivity analysis to guide sampling design.  

 

When interpreting genetic results, focusing more on biological relevance than on statistical 

significance is important; in the genomics era with thousands of loci, strong significance is easily 

obtained even for biologically marginal processes (Meirmans, 2015). Broad-scale landscape genetic 

studies must be carefully interpreted to avoid unwarranted extrapolation but provide key opportunities 



for illuminating patterns and processes across geographical space and taxonomic groups (Richardson 

et al., 2016). From an ecological perspective, however, shifting the focus from the exact genes 

involved in adaptation toward the processes and environmental variables that lead to adaptation to 

the local climate could be valuable (Meirmans, 2015). This could aid investigation on the presence 

of local ecotypes, where multiple genetic variants may be under influence of the environmental and 

ecological forces under study. This approach may also help solve the problems related to having low 

statistical power. Especially in non-model organisms, the lack of statistical power can make it difficult 

to establish clear associations between adaptive genetic variation, phenotypes, and reproductive 

isolation (Foote, 2012). Past signatures of selection are not certain to indicate future adaptive 

potential, and it can often be difficult to determine the specific cause of selection (Stanton et al., 

2019). Even if we have incomplete understanding of the underlying processes, identification of 

seemingly important genes can provide key advances for follow-up research and could further 

knowledge of connections among genes, communities, and ecological processes (Coulson et al., 

2006). Good hypotheses often exist about climatic variables that may affect the study species, and 

there are usually fewer climatic variables than genes, leading to less testing and less need for 

correction (Meirmans, 2015). The emerging findings from genome-wide studies combined with 

sound ecological data provide rich opportunities to inform our understanding of biology and 

evolution, and can help us in setting thoughtful priorities for conservation at the species level and 

beyond. Moreover, data on responses to human activity following colonization of new habitats 

(Gompper, 2002; McPhearson et al., 2016), or responses to the local absence of predators (or 

competitors) and their possible implications for source-sink dynamics (Goldberg et al., 2014) could 

inform interpretations of genetic results and research design. Ecotypes may emerge and disappear 

following landscape and environmental alterations. Traits such as body size, which can show clear 

genetic and environmental components (Rivrud et al., 2019) and appear instrumental in ecological 



genetic differentiation (Kays et al., 2010; Monzón et al., 2014) are often polygenic traits involving 

many genes each with a small effect. Accordingly, target genes may be difficult to detect with 

standard genome-wide association studies, although such traits could play a more important role in 

selection than that documented at present (Exposito-Alonso et al., 2018; François et al., 2016).  
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